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by analyzing the properties of Atanassov’s operators, we can generalize them. In this way,
we introduce a class of aggregation functions - the generalized Atanassov operators - that,
in particular, include two-dimensional OWA operators. We investigate under which condi-
tions these generalized Atanassov operators satisfy some properties usually required for
Interval-valued fuzzy sets aggre.gation functions, such as l.)isymrneFry, stric.tness, monotonicity, etc. We also §h0w
K, operators that if we apply these aggregation functions to interval-valued fuzzy sets, we obtain an
Generalized K, operators ordered family of fuzzy sets.

Dispersion © 2010 Elsevier Inc. All rights reserved.
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1. Introduction

In 1983 Atanassov introduced a new operator [2] allowing to associate a fuzzy set with each Atanassov intuitionistic fuzzy
set or interval-valued fuzzy set (IVES) [17,20]. In fact, this operator, which we denote by K,, takes a value from the interval
representing the membership to the IVFS and defines that value to be the membership degree to a fuzzy set [26,27]. In this
way, it is possible, for instance, to recover all the usual fuzzy set theoretic results when dealing with IVFS. In 1988 Yager
presented the definition of an OWA operator [22].

Comparison of the results of Atanassov and Yager reveals that in two dimensions the numerical results provided by Ata-
nassov operators and OWA operators are the same. This numerical coincidence prompted us to introduce and define new
operators by suitably modifying the domain for the definition of Atanassov’s operators. Analysis of the properties required
for Atanassov’s operators has allowed us to consider a class of aggregation functions that are a generalization of Atanassov’s
operators [6-8]. In particular, it would be interesting to determine whether some of the properties that are usually required
for aggregation functions, such as bisymmetry, strictness, monotonicity, etc., also hold for this class of generalized Atanassov
operators.
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As already stated, the original aim of Atanassov was to build fuzzy sets from IVFS. We have readdressed this aim for our
generalized Atanassov operators. This enables us to use these new operators in all the fields in which Atanassov operators
have worked well. For instance, because there is quite a simple way of associating each image with an IVFS in such a way that
the membership interval represents to some extent the properties of a piece of the image, we can use our generalized Ata-
nassov operators and the results linking them to OWA operators for image processing.

The remainder of the paper is organized as follows. The concepts of K, operators, aggregation functions, OWA operators
and IVFS are described in Section 2. Section 3 presents the relation between OWA and K, operators. In Section 4 we present a
generalization of the K, operator properties and two construction theorems. In the same section, we define a new family of
operators acting on pairs of real numbers and investigate their main properties. In Section 5 we propose two methods to
obtain fuzzy sets from IVFS by means of generalized K, operators. Section 6 concludes the paper.

2. Preliminary definitions

In fuzzy set theory, a strictly decreasing and continuous function N : [0, 1] — [0, 1] such that N(0) = 1,N(1) = O is called a
strict negation. If, in addition, N is involutive, then we say that it is a strong negation. We call automorphism of the unit inter-
val every function ¢ : [0,1] — [0, 1] that is continuous, strictly increasing and such that ¢(0) =0 and ¢(1) = 1.

In 1979 Trillas [21] presented the following theorem of characterization of strong negations.

Theorem 1. A function N : [0,1] — [0, 1] is a strong negation if and only if there exists an automorphism ¢ of the unit interval such
that N(x) = ¢~ 1(1 — @(x)).

A function T : [0,1]> — [0, 1] is said to be a t-norm if it is commutative, associative, increasing and has neutral element 1.
In the same way, a function S : [0,1]> — [0, 1] is said to be a t-conorm if it is commutative, associative, increasing and has
neutral element 0.

A variation of t-norms with modification only of the axiom concerning the neutral element was recently proposed [9] in
the following way:

Definition 1. A nullnorm is a binary operation V on the unit interval [0,1], i.e., a function V : [0,1]*> — [0, 1], which is
commutative, associative and increasing, and there exists a €0, 1] such that V(x,0) = x for all x € [0,a] and V(x, 1) = x for all
xela,1].

We consider a finite, non-empty referential set U = {uy,...,u,}. A fuzzy set is defined as A = {(u, u,(u))|u € U}, with
4 : U — [0,1] a membership function. FS(U) is the set of all fuzzy sets defined on U. For a given strict negation N the expres-
sion Ay = {(u,N(u,(u)))|u € U} is used to denote the complement of the fuzzy set A with respect to N.

We consider the following order relationship in FS(U), introduced by Zadeh [24]. For A,B € FS(U), A < B if and only if
Ha(u) < pg(u) for all u € U.

We denote by L([0, 1]) the set of all closed subintervals of the unit interval [0,1], that is:

L([0,1) = {x = [x. %I (x.%) € (0,17 and x < x}.

L([0,1]) is a partially ordered set with respect to the order relationship <; defined in the following way. Given x,y € L([0, 1]),
x<,y ifandonlyifx<y and x<}¥.
With this order relationship, (L([0, 1]), <;) is a complete lattice [6,8,11,13], where the smallest element is 0, = [0, 0] and the

largest is 1, = [1,1].
Given X,y € L([0, 1]), we define:

x<y and X<y
x<.y if and only if { or

1=
IN
<=
j=7]
jou]
o
xI
A
<

Definition 2 [25]. An IVFS A on the universe U is defined by a membership function Ma : U — L(]0, 1]).

We use bold font to denote mappings that are defined over L([0, 1]). IVFS(U) is the set of all IVFS over the universe U.
Ma(u) = [A(u),A(u)] € L([0,1]) is the membership degree of u € U, with A(u),A(u) € [0,1] denoting the lower and upper
bound, respectively, of the membership associated with u. Observe that a fuzzy set can be considered to be a particular type
of IVFS with the membership interval reduced to a single point, i.e., A(u) = A(u).

Given an interval x = [x,X] € L([0,1]), Length(x) =X — x is its length.

2.1. Aggregation functions

An n-ary aggregation function was formally defined by Calvo et al. [10] (see also [19]) as a function
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M:[0,1]" — [0,1],
such that,
(i) M(x1,...,x0) < M(yy,...,¥,) whenever x; <y; forallie {1,... n}.

(ii) M(0,...,0) = 0 and M(1,.... 1) 1.

Note that idempotency, which establishes that M(x, ..., x) = x for all x € [0, 1], is not universally recognized as a property
required for an aggregation function and some alternative properties are quite often assumed (see [16] for a discussion). In
any case, all the operators we consider here satisfy this property.

Here, unless otherwise stated, we consider binary aggregation functions; that is, n-ary aggregation functions with n = 2

Moreover, it should be recalled that the following properties can be required for an aggregation function.

e An aggregation function is called commutative or symmetric if
M(x,y) = M(y,x), forallx,ye[0,1].
e An aggregation operation M is called bisymmetric if
M(M(x,y),M(z,t)) = M(M(x,z),M(y,t)), forallx,y,z te0,1].
e An element a € [0,1] is called an annihilator of an aggregation operation M if
M(a,x) = M(x,a) =a, forall x€[0,1].
e An aggregation function M is said to be strictly increasing if for any x1,x2,y;,¥, € [0,1] such that x; < y;,x; <y, with
(%1,X2) # (¥1,-), the inequality M(x;,x2) < M(y;,y,) holds.
In 1948, Aczél presented the following result [1].

Theorem 2. Let M : [0,1]?> — [0, 1] be a function. Then M is continuous, strictly increasing, idempotent and bisymmetric if and only
if there exists a continuous strictly increasing function f : [0,1] — [0, 1] and a real number p €]0, 1] such that

M(x,y) = (pf(x) + (1 = P)f ().

Later, Fodor and Marichal considered the general form of continuous, commutative, increasing, idlempotent and bisym-
metric functions M [14]. In other words, they analyzed Aczél’s theorem when M is required to be increasing (not necessarily
strictly increasing).

Consider three real numbers x,y,z € R. Their median (denoted as median(x,y,z)) is defined as:
x if min(y,z) <x < max(y,z),
median(x,y,z) =< y if min(x,z) <y < max(x,z),
z if min(x,y) < z < max(x,y).

With this notion of median, Fodor and Marichal proved the following theorem for any interval, but we restrict ourselves to
the unit interval.

Theorem 3. M : [0,1]> — [0,1] is a continuous, commutative, increasing, idempotent, bisymmetric function if and only if there
exist two real numbers A and p fulfilling 0 < A < p < 1 such that:

(@) M(x,y) = Mo, (x.y), if x,y € [0, 2];

(b) M(x,y) = M,1,(x,¥), if x,y € [p,1];

(C) M(X,y) :fq (f(mediun(}V.x.p));f(mediun(/’.\y,p))) otherwise,

with Moy, : [0, 2]2 —[0,4] a continuous, commutative, increasing, idempotent and bisymmetric function such that
M(0,2) = A Mp1, : [p,1> — [p,1] a continuous, commutative, increasing, idempotent and bisymmetric function such that
M(p, 1) = p and f any continuous, bounded, strictly increasing function on [4, p].

2.2. Ordered weighted averaging aggregation operators
As already stated in the introduction, Yager introduced a particular type of aggregation function [22], the so-called or-
dered weighted averaging aggregation (OWA) operator.

Definition 3. A function F : [0,1]" — [0, 1] is called an OWA operator of dimension n if there exists a weighting vector W,
W = (W, Ws,...,wy) € [0,1]" with S";w; = 1, and such that
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n
Fla,ay,...,a,) = Zw,—bj, with b; the jth largest of the a;,

for any (ai,...,a,) € [0,1]".

Any OWA operator is completely defined by its weighting vector. However, in his original definition, Yager considered
functions F defined on the whole Euclidean space R" and taking values in R, but for our interest it is more appropriate to
reduce this to [0, 1]". Observe that with restriction >",w; = 1, if any of the components of the weighting vector W is equal
to 1, the other components should be zero.

Evidently, each OWA operator is a commutative, continuous, idempotent aggregation function [10,12,15,23]. Besides, any
OWA operator F is an averaging function, i.e., it verifies min < F < max (recall that this is a property fulfilled by any idem-
potent aggregation function). For an OWA operator the so-called stability under positive linear transformations with the
same unit and independent zeros (SPLU) is also fulfilled [15]. That is, if F is an OWA operator of dimension n, and if r > 0
and t € [0, 1], then, for any (ai,...,a,) € [0,1]", such that (ra; + t,ra; +t,...,ra, +t) € [0,1]", the following holds:

F(ra; + t,ra, +t,...,ra, +t) =rF(ay,ay,...,a,) + t.
Yager defined and investigated the following particular types of OWA operators, which coincide with well-known specific

cases of aggregation functions [23].

1. The “or” operator F': The weighting vector, denoted by W, is defined as w; = 1 and w; = 0 for all j # 1. Observe that
F(X1,...,X;) = Max(Xy,...,Xp).

2. The “and” operator F,: The weighting vector, denoted by W., is defined as w, = 1 and w; = O for all j # n. Observe that
F.(x1,...,X,) = Min(Xq,...,Xn).

3. The averaging operator F,: The weighting vector, denoted by W, is defined as w; = 1/nfor allj € {1,...,n}. Observe that
in fact F, recovers the arithmetic mean of x;,...,x,.

Moreover, since OWA operators are averaging functions, the OWA operators F, and F* can be considered the “smallest”
and “largest” OWA operators in the following sense.
F.ay,...,a;) < F(ay,...,a,) <F(a,...,a,) forall (ai,...,a,) €[0,1]".

Given an OWA operator of dimension n, another OWA operator of the same dimension can be built by duality in the follow-
ing way [22].

Definition 4. Let Fbe an OWA operator of dimension n with weighting vector W = (w1,...,wj,... wy). The dual operator of F,
denoted by F, is the OWA operator given by the dual weighting vector W= (Wn, oo s Woji, o, Wh).

To measure how far a given OWA operator is from F, and F*, the following measure was introduced by Yager [23].

Definition 5. Let F be an OWA operator of dimension n and W its weighting vector. The orness measure of W is defined as

orness(W 7] anl

From this definition it is easily shown that orness(W*) = 1, orness(W,) = 0 and orness(W,) = 0.5. Yager also proved that
the greater the orness of an OWA operator, the closer that operator is to the pure “or” operator F* [23].

Yager introduced another measure to compare OWA operators that have the same orness.

Definition 6. Let F be an OWA operator of dimension n and W its weighting vector. Its dispersion measure is defined as
n
dispersion(W) = — Z w; Inw;.

Observe that dispersion can be understood as a measure of entropy, as it shows how “far” a given OWA operator is from
the averaging operator F, [22]. In particular:

(1) If w; =1 for some i, then dispersion(W) = 0, so the dispersion is minimal.
(2) If w; = 1/n for all i, then dispersion(W) = Inn, so the dispersion is maximal.

One of the main advantages of OWA operators is the flexibility in the choice of the types of aggregation rules that can be
modeled. However, a problem arises as to how to determine the weights to be used in a particular application.

3. OWA operators and K, operators

As stated in the introduction, Atanassov proposed a family of operators to associate a fuzzy set to each IVFS [2,3].
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Definition 7. The operator K : [0, 1] x L([0,1]) — [0,1] is given by K = (Kx),¢o1, With each operator K : L([0,1]) — [0, 1]
defined as a convex combination of its boundary arguments by
KixX)=0-X+(1-0)-x,
where for any x € L([0, 1]) we write X = [x, X].

Clearly the following properties hold.

(i) Ko(x) = x for all x € L([0, 1)).
(ii) Kq(x) = x for all x € L([0, ])
(iii) Ky (x) = Ky ([Ko(X), K1(X)]) = Ko(X) + o(K1 (X) — Ko(X)) = x + o(X — x) for all x € L([0, 1]).

Obviously Ky (X) = &- X + (1 — ) - X, and because X > x, the family (K,), . is increasing.
Note that if we take the two-dimensional OWA operator F with We1ght1ng vector W = («, 1 — a) and apply it to the
bounds of the intervals, we obtain

F(x,%) = F(X,x) = Ko(X)

for all x € L([0, 1]). Nevertheless, although in these conditions the numerical value of both operators coincide, the two con-
cepts are very different. K, acts on elements of L([0, 1]), whereas the OWA operator F acts over [0, 1] x [0, 1]. In other words,
the domains of both operators are different. In particular, K, is defined on the set of pairs of points, extremes of the intervals,
that are ordered. However, an OWA operator is defined on the unit square and requires an ordering operation.

This numerical coincidence prompted us to study possible relations between the two concepts, as in the following results.

Theorem 4 (K, operators are OWA operators of dimension 2). Let o € [0,1] and K, = K, o i, where K, is the operator given in
Definition 7 and i : [0,1)* — L([0, 1)) given by

i(x,y) = [min(x,y), max(x, y)].
Then, if F(x,y) is the OWA operator (of dimension 2) defined by the weighting vector W = (o, 1 — o), we have
Ka(x,y) =F(x,y) forallx,y€0,1].
Proof. It is sufficient to take into account that any interval x € L([0, 1]) is defined by a pair (x,X) € [0, 1)* with x < X, the shape
of the operator [, and the definition of OWA operators. [
In particular, since the operator I, is an OWA operator, we have the following corollary.
Corollary 1. Let o € [0,1]. Then the following hold:
) K, is commutative and idempotent.
) Ko(x,y) = min(x,y) and K; (x,y) = max(x,y).
) KK, is increasing.
)
)

Let p €[0,1]. If oo < B, then K, (x,y) < Kp(x,y) for all (x,y) € [0, 12
Ky(0,1) = o

Proof. The proof directly follows from Theorem 4 and the well-known properties of OWA operators. [
Theorem 5 (OWA operators of dimension 2 are K, operators). Let F be an OWA operator of dimension 2 with weighting vector
W = (w;,w,). Then for any (x,y) € [0,1]> we have

F(X,y) = Kd(xvy)a

with o = wy.

Proof. The proof directly follows from the definition of I£,. O

Because K, operators are written in terms of K, and K;, we can also express the OWA operators in terms of these two
OWA operators. In particular, observe that if F is an OWA operator of dimension 2 defined by the weighting vector
(w1, w,), then, for any x,y € [0,1]

F(X,y) =W K] (X.y) + WzKO(X:y)‘
In particular,

(1) F*(X,y) = 1(1([min(x,y),max(x,y)]) =K (va):
(2) F.(x,y) = Ko([min(x,y), max(x,y)]) = Ko(x,y); and
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(3) Fa(x,y) = (Ko([min(x,y), max(x,y)]) + K1 ([min(x,y), max(x,y)]))/2 = 3 (x +y) = (Ko(x.y) + K1 (x,y))/2

For the orness and dispersion we have the following results.

Proposition 1. Let « € [0,1]. The following properties hold:
(1) orness(iKy) = o
(2) dispersion(l<,) = oln (%) — In(1 — o).

Proof. The proof follows directly from the definitions of orness and dispersion. [

It is easy to see that dispersion is maximal when o = 1/2 — which means that both weights are equal - and is minimal
when o = 1 or o = 0, and, as in the general OWA case, could be used to measure the entropy of the transformation of an IVFS
in a fuzzy set.

Proposition 2. Let o € [0, 1] and K, = K, o i, where K, is the operator given in Definition 7 and i is the function given in Theorem
4. The following properties hold.

If o €]0, 1], then K, is strictly increasing;

If « €]0,1], then K,(x,y) =0 if and only if x =y = 0.

If 0 €]0,1], then K,(x,y) =1 ifand only ifx =y = 1.

K, has the SPLU property.

Ka(x,y) + K.(x,y) = x +y, where K, denotes the dual mapping of I, as given in Definition 4.
Ky = Kq_4-

DO —

(1
(2
(3
(4
(5
(6

Proof. All these properties follow from the corresponding ones for two-dimensional OWA operators. [

Although some of these properties are already known for the K, operators, they are now a consequence of the OWA per-
spective. The SPLU (stability under positive linear transformations with the same unit and independent zeros) property can
be interpreted as a partial translation invariance and is useful in applications that require handling of general amplitudes.

Remark 1. Let o €]0, 1] and K, = K, o i, where K, is the operator given in Definition 7. Then:
(1) K, is not associative. Consider

Ky (K, (0,1),1) = Ky(t, 1) = 200 — 02,
whereas

(0, ,(1,1)) = Ky(0,1) = o,
and 2o — o # o if 0 # o # 1.

(2) K, is not bisymmetric whenever o # 1. 1K, (,(0,1), K (o, o)) = Ky(o, &) = or. By contrast, K, (K, (0,a), Ky (1,0)) =
<y (0, 200 — 0?) = 302 — 2¢3. In this situation for o ¢ {0,0.5,1}, bisymmetry does not hold.

4. Generalized K, operators

Observe that, if we denote by K the system of operators (Ky), 1, then K can be regarded as an operator on [0, 1] x L([0, 1])
with values in [0,1]. To generalize this operator, the following definition was proposed by Bustince et al. [6,8,7].

Definition 8. A GK operator is a mapping GK : [0,1] x L([0,1]) — [0,1] such that, if we denote GK,(x)= GK(a,X), the
following properties hold:

(i) If x = X, then GK,(X) = x.
(ii) GKo(x) = x,GK;(x) = x for all x € L([0, 1]).
(iii) If x<,y, with x,y € L([0, 1]), then GK,(x) < GK,(y).
(iv) Let g €[0,1]. If o < B, then GK,(X) < GKj(x) for all x € L(]0, 1]).
(v) GK,(]0,1]) = .
From the theoretical point of view, condition (v) above might be very strong. From the applied point of view, it is quite

important to ensure that GK(-, [0, 1]) provides a bijection from the unit interval onto itself. Condition (v) above is a very sim-
ple way of building this bijection, in such a way that, moreover, [0,1] comes out to be a neutral element.

Example 1
x ifx<o,
GK,(x,X]) =4 x ifx>q, (1)
o otherwise.
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Note that the result obtained is nothing but the «-median of x and X, or, equivalently, the result given by the idempotent
nullnorm with annihilator « when applied to x and X (see, e.g. [10]).
Proposition 3. Any system K = (Kx),¢01) is a GK operator.

By contrast, the K, operators can be considered the “simplest” GK, operators, in the sense of the following proposition.

Proposition 4. Let # = (Ha) 50,1 be a GK operator such that, for any o € [0,1],H, is a linear mapping of the extremes of the
interval, i.e.

Hy(x) = a(a)x + b(o)x,
for some mappings a,b : [0,1] — [0,1]. Then a(x) =1 — o and b(at) = o for any o € [0,1], thatis, H, = K.
Proof. Suppose that H,(x) = a(o)x + b(2)X as in the statement of the proposition. From (i) in the definition of GK,, operators

we have that H,([x,x]) = a(o)x + b(a)x =x for all x € [0,1], so a(x) =1 - b(«). Since from (v) in the same definition
H,([0,1]) = (1 — b()) - 0+ b(a) - 1 = «, it follows that b(«) = « and the result holds. O

4.1. Construction of operators GK,
Theorem 6. Let o € [0,1] and let f:[0,1] — [0,1] be a continuous and strictly increasing function. Then the operator
GK, : L(]0,1]) — [0, 1] given by

( ) =11 -p)f (%) +pf (%)),

with p =@ (g) is a continuous GK, operator in the sense of Definition 8.

Proof. We see that all the properties in Definition 8 hold. Continuity is clear. If & =0, then p=0. In this case
GKo([x,X]) = f1(f(x)) =x. If ¢ = 1, then p = 1 and therefore GK;([x,X]) = X.

If [x,y]<1[z, y] because f is continuous and strictly increasing, we have, for p as in the statement of the theorem and fixed,
GKy([x,y]) = F1((1 = p)f () + PFY) < F~((1 - P)f (@) + PFY)) = GKa([z.Y)).

Take o, € [0,1]. If o < B, then f(a) < f(B). Since p is increasing in « and f is a strictly increasing function, it follows that
GK([x,X]) < GK ([, X]).

G ([0,1]) =~ (1 = PIf(0) + (1)) = F~1F(0) + PUF(1) = f(0))) = 1 (F(0) + GG F(1) — f(0))) =1 (f(2) = . T3

Remark 2. Continuity of the function f is necessary in Theorem 6, as the following example shows. Define

f(x):{x %ngxgz

1 1 1
x+5 if J<x<1

Then it is clear that fis not surjective, because, for instance, there is no inverse image for the point x = 2, so the function f-! is
not defined over the whole [0, 1]. Since a strictly increasing, surjective function under the conditions of Theorem 6 should be
continuous - it cannot have any point of discontinuity, because it cannot have jumps - the hypothesis of continuity is
natural.

Corollary 2. Let @ be an automorphism of the unit interval and a GK operator GK = (GK4),. 0, Then the system
GK'® (GK ) o1l where, for any o € [0,1],GK'?) : L([0,1]) — [0,1] is defined by
ael0,

G, (%) = @' (@()p(X) + (1 — p(2)) p(x)),

is a continuous GK operator in the sense of Definition 8.
Proof. The proof is immediate. O
Example 2. Just by taking ¢(x) = x we recover Atanassov’s operator.

Example 3. For each q > 0 the function ¢(x) = x? defines the GK operator given by
GKL) (x) = (a9(%)" + (1 — 09) (x)7)",
for o € [0, 1], that is, a weighted root-power mean (see, e.g. [10]) of x and x.

Corollary 3. Let N be the strong negation generated by Theorem 1 using the automorphism in Corollary 2 . Then we have:

GKY (%) = @' ((0) (%) + P(N(2)) 9(x)).
Proof. The proof is direct. O
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4.2. GK, operators
Operators GK,, act on elements of L([0, 1]). Now we generalize them in such a way that they are defined over [0, 1]%, at the
same time that they retain most of the properties of GK,. This leads to the following theorem.
Theorem 7. Consider i : [0,1]* — L([0,1]) given by
l.(X,y) = [min(x,y), max(x,y)].
Let o € [0,1] and consider GI, : [0,1]* — [0, 1] given by
K{x(xay) = (GI<1 o i)(xvy)a
where GK,, is the operator given in Definition 8 . Then the following observations hold.
GK, is commutative and idempotent.

GKo(x,y) = min(x,y) and GI; (x,y) = max(x,y).

(a)
(b)
(¢) GK, is increasing.
)
)G

d Let B €0,1]. If « < B, then GI,(x,y) < GKy(x,y) for all (x,y) € [0,1]%.

(
(e) GK,(0,1) = o

Proof. The proof is direct. [

Proposition 5. Let o € [0,1] and GK, = GK, o i, where GK, is the operator given in Definition 8 and i is the function given in
Theorem 7 . The following properties hold.

) If . = G, (o, 1) with o €]0, 1], then GIK,, is not strictly increasing.
) If oo = GIK, (e, 0) with o € [0, 1], then GK, is not strictly increasing.
) If GK, is strlctly increasing, then GK, is strictly i lncreasmg

)G

(1
(2
3
(4) GK,(min(x,y), max(x,y)) = GK,(x,y) for all (x,y) € [0,1]%.

Proof. (1) Suppose that G, is strictly increasing. By taking o €]0, 1] we have o = GK,(«, 1) > GIK,(0,1) = o, which is con-
tradictory. (2) As for item (1). (3)-(4) The proof is direct. [

Example 4. If in the construction of Gk, = GK, o i we take expression (1) for GK,, the operator we obtain is an «-median (an
idempotent nullnorm with annihilator o). Among other properties, it satisfies « = GI,(«, 0) and oo = GK,(«, 1) (in fact it sat-
isfies o = GIK, (o, X) for any x € [0, 1]) and it is not strictly increasing.

4.3. Bisymmetric GIK, operators

In Remark 1 we have seen that the operator K, = K, o i constructed from the K, operator is not bisymmetric. Hence, if we
take GK, = K,, the operator

Gy (x,y) = (GKy o 1)(x,y) = GK,([min(x,y), max(x,y)]) = K,([min(x,y), max(x, y)])
= min(x,y) + a(max(x,y) — min(x,y)),
is not bisymmetric. Nevertheless, if we take expression (1) for GK,, then GK, = GK, o i is bisymmetric. All these consider-
ations prompted us to study the bisymmetry of GIK,.

Theorem 8. Let GIK, = GK, o i be a bisymmetric operator and GK, the operator given in Definition 8 . Then:

GKy (o, 1) = o if and only if GKy(x,0) = o.

Proof. By Theorem 7 we know that G, is idempotent and GK,(0,1) =
(Necessity) By hypothesis, Gy (o, 1) = . Therefore
Gy (ar,0) = G, (GKy (0, 1), GKy(0,0)) = G, (GKy (e, 0), GiKy(1,0)) = G, (GKy (e, 0), o).
On the other hand, we have that
Gy (Gl (0, 0), ) = Gy (G4 (0, 0), G4 (02, 1)) = Gy (GIy (0, 02), Gy (0, 1)) = G, (ot o) = 0.
(Sufficiency) The proof is similar. O
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4.3.1. Increasing and bisymmetric G, operators
In the next theorem we analyze when the increasing bisymmetric operators considered by Fodor and Marichal [14] satisfy
M,(0,1) = o (which is an adaptation of GIK,(0,1) = ).

Theorem 9. M, : [0,1]> — [0,1] with o €[0,1] and M,(0,1) = is a continuous, commutative, increasing, idempotent,
bisymmetric function if and only if there exist two real numbers 4 and p fulfilling 0 < 1 < p < 1 and a bounded function f that
is continuous and strictly increasing on [, p] fulfilling 2f (o) = f(4) + f(p) such that
Mo,.;(x,y) if x,y €[0,7]
Ma(x,y) = M,,_]_p(x,y), lf X,y € [p 1]
f,1 (f(median(/i.x.p));f(median(z,y,p))) otherwise

with Moy, : [0, )v]z —[0,4] a continuous, commutative, increasing, idempotent and bisymmetric function such that
M (0,2) = My, - [p,11> = [p,1] a continuous, commutative, increasing, idempotent and bisymmetric function such that

M.(p,1) = p.
Proof. (Necessity) By Theorem 3 we have that there exist two real numbers 4 and p fulfilling 0 < 4 < p < 1 such that:

(a) My(x,y) = Mo, (x,y), if x,y € [0, 4].
(b) Moz(XJ) = Mp.l.p(x>y)v ifx,y € [pv 1]-

(C) Mq(xy) :f,1 (f(median(/i‘x‘p));f(median(}.y.p))) otherwise,

with Mo, : [O,A]2 —[0,7] a continuous, commutative, increasing, idempotent and bisymmetric function such that
M, (0,2) =AMy, : [P, 1) = [p, 1] a continuous, commutative, increasing, idempotent and bisymmetric function such that
M,(p,1) = p and f any continuous, bounded, strictly increasing function on [4, p].

Moreover, by hypothesis, M,(0, 1) = o. Therefore,

My(0,1) = o = f! (M)

and then, since by our hypothesis, f can be inverted, 2f(«) = f(1) + f(p).
(Sufficiency) By hypothesis, 0 < . < p < 1 and 2f(a) = f(2) + f(p). Besides, median(4,0, p) = A and median(2,1, p) = p,
and therefore M,(0,1) = f-! (W#) =f1f() =0 O

Under the conditions of Theorem 9 we have that the values of 1 and p are related to the value of o we are considering. For
this reason we denote them by /() and p(x), respectively.
Corollary 4. Under the conditions of Theorem 9, if the family M,, is increasing in o, that is, if for any «, 8 €]0,1], if oo > j, then
My(x,y) = Mg(x,y) for all x,y € [0,1], and then /i(x) and p(c) are increasing, ie. if 1 >o > >0, then A(x) > A(f) and
p() = p(h)-

Proof. Take o, § €]0, 1[. By definition (see [14]),
(o) = sup{x € [0, 1]|]M,(0,x) = x}.

Take x €]0, 1[. If x > (c), by continuity, M, (0,x) < x. Since, if M,(0,x) > x, as M,(0,1) = o < 1, by the mean value theorem
there exists xo €]0, 1] such that M,(0,x,) = Xo, which is a contradiction.

Take O<p<o If Aa)=1,Af) <A(o) trivially. If A(x) <1, then for all xe]i(n),1],M,(0,x) <x and
M;(0,x) < My(0,x) < x, and therefore A(f) < A(x). Analogously, it is evident that p(8) < p(«). O

In Theorem 9 we studied the operators defined by Fodor and Marichal satisfying M, (0, 1) = o. We also know that oper-
ators GK, have the following properties: Gl<o(x,y) = min(x,y) and GK; (x,y) = max(x, ). For this reason, in the next theorem
we use the functions of Fodor and Marichal to define operators G, such that G,(0,1) = o, Go(x,y) = min(x,y) and
G1(x,y) = max(x,y).

Theorem 10. Consider the function G, : [0,1]* — [0, 1] with o € [0,1] defined as:
max(x,y) if x,y €0, A(0)];

Gy(x,y) = { min(x,y) if x,y € [p(a),1];
f71 (f(median().(oc),x.p(oc)));f(median(i(oc)‘y‘p(ot)))) OtherWl.SB,

with A(a) and p(a) two real numbers such that 0 < A(o) < p(o) < 1, and f a function that is continuous and strictly increasing on
[A(a), p(o0)] fulfilling 2f (o) = f(A(et)) + f(p(x)). Then G, is continuous, commutative, increasing, idempotent and bisymmetric and
satisfies G,(0,1) = o, Go(x,y) = min(x,y) and G;(x,y) = max(x,y).
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Proof. Just observe that G, has the structure of the mapping M,, in the sufficiency condition in Theorem 9. O

Corollary 5. In the setting of Theorem 10 we have that:
Gy(o, 1) =0 if and only if o = A(o) = p(at).

Proof. (Necessity) By Proposition 8 we know that G,(a,1) = o if and only if G,(o,0) = o. Taking into account Theorem 10,
we have that 0 < A(®) < o < p(&) < 1. Therefore, if G, (o, 1) = o0 = f~! (’M) then o = p(a).

If Gy(0t,0) = o = f! (WW;M) then o = (c).

(Sufficiency) The proof is direct. O

Note that if o = A(a) = p(«), then the function G, of Theorem 10 becomes an «-median (i.e., the idempotent nullnorm
with annihilator o).

From Theorem 10 and Corollary 5, if we impose the condition that « is an annihilator on the operators of Fodor and Mari-
chal, we have the following result.

Theorem 11. The idempotent nullnorms with annihilator o €]0, 1 are G, = GK, o i operators.
Proof. In the construction Gk,, take GK, given in (1). We have

max(x,y) if x,y <,
Gl (%,y) = GKy([min(x, y), max(x,y)]) = { min(x,y) if x,y > o, (2)
o otherwise.

So the theorem is proved by recalling Theorem 10, Corollary 5 and the fact that for each « €]0, 1] there exists a unique idem-
potent nullnorm V, with annihilator « [18] which is given by (2). O

Remark 3. Note that under the hypothesis of Theorem 11:

e GIK, is bisymmetric because it is commutative and associative.

o GK,(0,1) = a = GKy(a, 1) = Giy(ar, 0) = G, (o, o), and therefore by Proposition 5 we have that GK, is not strictly
increasing.

e GIK, = GK, oi with GK, the operator given in (1); then we have that GKy(x,y) = min(x,y) and Gk, (x,y) = max(x,y).

4.3.2. Construction from Aczél’s theorem
In this subsection we consider a family of strictly increasing operators H, that satisfy properties (a)-(e) of Theorem 7 and
that are obtained from Aczél's theorem.

Theorem 12. Consider the function j : [0,1]> — [0, 1) given by
Jj(x,y) = (min(x, y), max(x,y)),

and consider H, : [0,1]* — [0, 1] given by
Hy(x,y) ="' (pf () + (1 = PF ),

where f:[0,1] —[0,1] is continuous and strictly increasing, p =/ and o€ [0,1]. In this setting, the function
H, : [0,1]* — [0, 1] given by

Hy(X.y) = (Hy 0 j)(x,y) = f (pf(min(x,y)) + (1 - p)f(max(x.y))) = f " (f(max(x.y)) — plf (x) = F()])
satisfies the following:

(a) It is commutative and idempotent.

(b) Ho(x,y) = min(x,y) and H;(x,y) = max(x,y).

(c) If « €]0,1], it is strictly increasing.

(d) Take o, § € [0,1]. If & < B, then H,(x,y) < Hy(x,y) for all (x,y) € [0,1]%.
(e) Hy(0,1) =0

Proof. The proof is direct from Theorem 2. O

Note that the above operator is a generalized OWA (a “quasi-OWA”"), i.e., the transformation (see e.g. [10] p. 30) of an
OWA by means of a monotonic function (see e.g. [10] p. 56, where it is called OWQA). Note that these functions can also
be seen as “symmetrization” (see e.g. [10] p. 15) of the weighted quasi-arithmetic mean, because they can be constructed
from the latter (see [10 p. 56]).
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Remark 4. Note that in the construction of H,, we use Aczél’s theorem (Theorem 2). Nevertheless, the operators given by
Aczél are bisymmetric, whereas the function Hy, in general, is not.

Corollary 6. Under the conditions of Theorem 12 the following properties hold:

(1) If p =14, then H, is bisymmetric.
(2) Hy(x,T(y,2)) = T(H4(X,y), Hs(x,2)) if and only if T = min.
(3) Hy(x,S(¥,2)) = S(H4(X,¥), Hy(x,2)) if and only if S = max.

Proof. 1. The proof is direct. Observe that with weight p = 1 the operator becomes a quasi-arithmetic mean and hence fulfills
bisymmetry. 2.

(Sufficiency) We know that T(x,x) < x holds for any t-norm. Then H, (x, T(x,X)) = T(Hy (X, X), Hy(x,X)) = T(x,x); that is,
FHPF(T(x.%) + (1 - p)f (x)) = T(x,x). Therefore, pf(T(x,x) + (1 - p)f(x) = f(T(x.x)) and then (1 - p)f(x) = (1 p)f (T(x,x)).
Taking into account that p €]0,1[ and f is strictly increasing and continuous, T(x,x) = x for all x € [0, 1]. Because the only
idempotent t-norm is the minimum, we have that T = min.

(Necessity) The proof is direct from the monotonicity of H,. 3. Similar to item 1. O

Corollary 7. Under the conditions of Theorem 12 , if the function f is such that for any x € [0,1] and for any 4 > O such that
Jx € [0,1] the identity f(ix) = if (x) holds (first-order homogeneity), then
Hy (A%, Ay) = AH, (X, ).

Proof. Under the conditions of Theorem 12, if f(/x) = Af (x), then f~1(Jx) = Af~!(x), as can easily be seen by applying f to each
side of this last identity and taking into account the injectivity of f. O

Remark 5. Observe that if fis first-order homogeneous, then f(x) = f(1)x for all x € [0, 1].

Corollary 8. Under the conditions of Theorem 12, if f is first-order homogeneous, then
fTEMKax,y) if «€]0,1],
Hy(x,y) = (Hy 0j)(x,y) = { min(x,y) if a=0,
max(x,y) ifo=1.
Proof. Immediate. O

Remark 6. Under the conditions of Theorem 12, if f(x) = x for all x € [0, 1] and « €]0, 1], then
Ha(x,y) = (Hy 0 j)(x,y) = Ka(x,y) = (Ky 0 )(x,y)

for all (x,y) € [0,1]%

5. Construction of a FS from a IVFS and an operator GK,

In this section we present two methods to associate with each IVFS over the referential U a fuzzy set over the same ref-
erential. In both methods we use the operators GK,.

5.1. Construction with fixed o

Let A € IVFS(U). Fix o € [0, 1]. By means of the corresponding GK, operator, we can associate a fuzzy set A, with A in the
following way [2,3,5]:

Ay = {(u, p, (w)lu e U} with p, (u) = GK,(Ma(u)), 3)
where M, denotes the membership function of A.
Let A be an IVFS. We denote by {A,} ., the family of all fuzzy sets associated with A by an operator GK, when o varies in

[0,1].
From the definition of the GK, operators, the following theorem follows [4].

Theorem 13. Let A € IVFS(U), let p € [0, 1] and consider an operator GK,. Then {Ay},c 4, is a totally ordered family of fuzzy sets
with respect to the order

Ay, <Ag if and only if o < p.
5.2. Construction with variable o

The map between IVFS(U) and FS(U) given in (3) is such that, once « is fixed, this « is used to obtain the membership of
every one of the elements u in U. This restriction is not necessary, and is not even advisable for some of the possible
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applications. In this sense, we show in the following definition a possible way of relating to each IVFS a fuzzy set in such a
way that for each u € U we use a different value of o to obtain its membership.

Definition 9. Let A € IVFS(U). For each u € U, take a(u) € [0, 1]. Then A,,) = {(u,,uAl(v)(u) = GKyu (MA(u))> lue U} is a fuzzy
set.

From Definition 9 the following properties follow.

Proposition 6. Let A € IVFS(U).

(1) If o(u) < B(u) for all u € U, then A,y < Ag).
(2) If for all u € U we have that Length(Ma(u)) = 0, and then A,,, = A € FS(U).
(3) Let A,B € IVFS(U). If Ma(u)<,Mg(u) for all u € U, then A,., < Byu).

Proof. The proof is immediate. O
Proposition 7. Let A € IVFS(U) and take GK, = K,. Under the conditions of Definition 9 the following observations hold.

(1) If we take N(x) =1 — x, then for any u € U and any choice of o(u) € [0,1] we have 1 — Hian), = Ha, (W)
(2) If, for all u € U, we take o(u) = ,uAO(u)/<l + o, (W) — [y, (U) ) with p, (u) — w, (u) # 1, then

Auey = {(u, %(u)))|u € UY.

Proof. The proof is direct. O

6. Conclusions and future research

We established a link between K, operators and OWA operators of dimension 2. This relation led to the definition of a
class of aggregation functions, the K, operators, in terms of K, operators in such a way that the resulting class encompasses
OWA operators of dimension 2.

This generalization retains most of the important features of Atanassov’s operators. We presented two construction the-
orems for our functions and studied under which conditions they are bisymmetric.

Regarding future lines of research, a complete theoretical study of the general characterization of GK, operators is re-
quired. In particular, because the resulting operators are instances of aggregation functions, we intend to study which aggre-
gation functions give rise to generalized Atanassov’s operators.
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