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In this paper we prove that, under suitable conditions, Atanassov’s Ka operators, which act
on intervals, provide the same numerical results as OWA operators of dimension two. On
one hand, this allows us to recover OWA operators from Ka operators. On the other hand,
by analyzing the properties of Atanassov’s operators, we can generalize them. In this way,
we introduce a class of aggregation functions – the generalized Atanassov operators – that,
in particular, include two-dimensional OWA operators. We investigate under which condi-
tions these generalized Atanassov operators satisfy some properties usually required for
aggregation functions, such as bisymmetry, strictness, monotonicity, etc. We also show
that if we apply these aggregation functions to interval-valued fuzzy sets, we obtain an
ordered family of fuzzy sets.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

In 1983 Atanassov introduced a new operator [2] allowing to associate a fuzzy set with each Atanassov intuitionistic fuzzy
set or interval-valued fuzzy set (IVFS) [17,20]. In fact, this operator, which we denote by Ka, takes a value from the interval
representing the membership to the IVFS and defines that value to be the membership degree to a fuzzy set [26,27]. In this
way, it is possible, for instance, to recover all the usual fuzzy set theoretic results when dealing with IVFS. In 1988 Yager
presented the definition of an OWA operator [22].

Comparison of the results of Atanassov and Yager reveals that in two dimensions the numerical results provided by Ata-
nassov operators and OWA operators are the same. This numerical coincidence prompted us to introduce and define new
operators by suitably modifying the domain for the definition of Atanassov’s operators. Analysis of the properties required
for Atanassov’s operators has allowed us to consider a class of aggregation functions that are a generalization of Atanassov’s
operators [6–8]. In particular, it would be interesting to determine whether some of the properties that are usually required
for aggregation functions, such as bisymmetry, strictness, monotonicity, etc., also hold for this class of generalized Atanassov
operators.
. All rights reserved.
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As already stated, the original aim of Atanassov was to build fuzzy sets from IVFS. We have readdressed this aim for our
generalized Atanassov operators. This enables us to use these new operators in all the fields in which Atanassov operators
have worked well. For instance, because there is quite a simple way of associating each image with an IVFS in such a way that
the membership interval represents to some extent the properties of a piece of the image, we can use our generalized Ata-
nassov operators and the results linking them to OWA operators for image processing.

The remainder of the paper is organized as follows. The concepts of Ka operators, aggregation functions, OWA operators
and IVFS are described in Section 2. Section 3 presents the relation between OWA and Ka operators. In Section 4 we present a
generalization of the Ka operator properties and two construction theorems. In the same section, we define a new family of
operators acting on pairs of real numbers and investigate their main properties. In Section 5 we propose two methods to
obtain fuzzy sets from IVFS by means of generalized Ka operators. Section 6 concludes the paper.

2. Preliminary definitions

In fuzzy set theory, a strictly decreasing and continuous function N : ½0;1� ! ½0;1� such that Nð0Þ ¼ 1;Nð1Þ ¼ 0 is called a
strict negation. If, in addition, N is involutive, then we say that it is a strong negation. We call automorphism of the unit inter-
val every function u : ½0;1� ! ½0;1� that is continuous, strictly increasing and such that uð0Þ ¼ 0 and uð1Þ ¼ 1.

In 1979 Trillas [21] presented the following theorem of characterization of strong negations.

Theorem 1. A function N : ½0;1� ! ½0;1� is a strong negation if and only if there exists an automorphism u of the unit interval such
that NðxÞ ¼ u�1ð1�uðxÞÞ.

A function T : ½0;1�2 ! ½0;1� is said to be a t-norm if it is commutative, associative, increasing and has neutral element 1.
In the same way, a function S : ½0;1�2 ! ½0;1� is said to be a t-conorm if it is commutative, associative, increasing and has
neutral element 0.

A variation of t-norms with modification only of the axiom concerning the neutral element was recently proposed [9] in
the following way:

Definition 1. A nullnorm is a binary operation V on the unit interval [0,1], i.e., a function V : ½0;1�2 ! ½0;1�, which is
commutative, associative and increasing, and there exists a 2�0;1½ such that Vðx;0Þ ¼ x for all x 2 ½0; a� and Vðx;1Þ ¼ x for all
x 2 ½a;1�.

We consider a finite, non-empty referential set U ¼ fu1; . . . ;ung. A fuzzy set is defined as A ¼ fðu;lAðuÞÞju 2 Ug, with
lA : U ! ½0;1� a membership function. FSðUÞ is the set of all fuzzy sets defined on U. For a given strict negation N the expres-
sion AN ¼ fðu;NðlAðuÞÞÞju 2 Ug is used to denote the complement of the fuzzy set A with respect to N.

We consider the following order relationship in FSðUÞ, introduced by Zadeh [24]. For A;B 2 FSðUÞ; A 6 B if and only if
lAðuÞ 6 lBðuÞ for all u 2 U.

We denote by Lð½0;1�Þ the set of all closed subintervals of the unit interval [0,1], that is:
Lð½0;1�Þ ¼ x ¼ ½x; �x�jðx; �xÞ 2 ½0;1�2 and x 6 �x
n o

:

Lð½0;1�Þ is a partially ordered set with respect to the order relationship 6L defined in the following way. Given x; y 2 Lð½0;1�Þ,
x6 Ly if and only if x 6 y and �x 6 �y:
With this order relationship, ðLð½0;1�Þ;6LÞ is a complete lattice [6,8,11,13], where the smallest element is 0L ¼ ½0;0� and the
largest is 1L ¼ ½1;1�.

Given x; y 2 Lð½0;1�Þ, we define:
x< Ly if and only if

x < y and �x 6 �y

or
x 6 y and �x < �y:

8><>:
Definition 2 [25]. An IVFS A on the universe U is defined by a membership function MA : U ! Lð½0;1�Þ.

We use bold font to denote mappings that are defined over Lð½0;1�Þ. IVFSðUÞ is the set of all IVFS over the universe U.
MAðuÞ ¼ ½AðuÞ;AðuÞ� 2 Lð½0;1�Þ is the membership degree of u 2 U, with AðuÞ;AðuÞ 2 ½0;1� denoting the lower and upper
bound, respectively, of the membership associated with u. Observe that a fuzzy set can be considered to be a particular type
of IVFS with the membership interval reduced to a single point, i.e., AðuÞ ¼ AðuÞ.

Given an interval x ¼ ½x; �x� 2 Lð½0;1�Þ; LengthðxÞ ¼ �x� x is its length.

2.1. Aggregation functions

An n-ary aggregation function was formally defined by Calvo et al. [10] (see also [19]) as a function
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M : ½0;1�n ! ½0;1�;
such that,

(i) Mðx1; . . . ; xnÞ 6 Mðy1; . . . ; ynÞ whenever xi 6 yi for all i 2 f1; . . . ;ng.
(ii) Mð0; . . . ;0Þ ¼ 0 and Mð1; . . . ;1Þ ¼ 1.

Note that idempotency, which establishes that Mðx; . . . ; xÞ ¼ x for all x 2 ½0;1�, is not universally recognized as a property
required for an aggregation function and some alternative properties are quite often assumed (see [16] for a discussion). In
any case, all the operators we consider here satisfy this property.

Here, unless otherwise stated, we consider binary aggregation functions; that is, n-ary aggregation functions with n ¼ 2.
Moreover, it should be recalled that the following properties can be required for an aggregation function.

� An aggregation function is called commutative or symmetric if
Mðx; yÞ ¼ Mðy; xÞ; for all x; y 2 ½0;1�:
� An aggregation operation M is called bisymmetric if
MðMðx; yÞ;Mðz; tÞÞ ¼ MðMðx; zÞ;Mðy; tÞÞ; for all x; y; z; t 2 ½0;1�:
� An element a 2 ½0;1� is called an annihilator of an aggregation operation M if
Mða; xÞ ¼ Mðx; aÞ ¼ a; for all x 2 ½0;1�:
� An aggregation function M is said to be strictly increasing if for any x1; x2; y1; y2 2 ½0;1� such that x1 6 y1; x2 6 y2 with
ðx1; x2Þ – ðy1; y2Þ, the inequality Mðx1; x2Þ < Mðy1; y2Þ holds.

In 1948, Aczél presented the following result [1].

Theorem 2. Let M : ½0;1�2 ! ½0;1� be a function. Then M is continuous, strictly increasing, idempotent and bisymmetric if and only
if there exists a continuous strictly increasing function f : ½0;1� ! ½0;1� and a real number p 2�0;1½ such that
Mðx; yÞ ¼ f�1 pf ðxÞ þ ð1� pÞf ðyÞð Þ:
Later, Fodor and Marichal considered the general form of continuous, commutative, increasing, idempotent and bisym-
metric functions M [14]. In other words, they analyzed Aczél’s theorem when M is required to be increasing (not necessarily
strictly increasing).

Consider three real numbers x; y; z 2 R. Their median (denoted as medianðx; y; zÞ) is defined as:
medianðx; y; zÞ ¼
x if minðy; zÞ 6 x 6maxðy; zÞ;
y if minðx; zÞ 6 y 6maxðx; zÞ;
z if minðx; yÞ 6 z 6maxðx; yÞ:

8><>:

With this notion of median, Fodor and Marichal proved the following theorem for any interval, but we restrict ourselves to
the unit interval.

Theorem 3. M : ½0;1�2 ! ½0;1� is a continuous, commutative, increasing, idempotent, bisymmetric function if and only if there
exist two real numbers k and q fulfilling 0 6 k 6 q 6 1 such that:

(a) Mðx; yÞ ¼ M0;k;kðx; yÞ, if x; y 2 ½0; k�;
(b) Mðx; yÞ ¼ Mq;1;qðx; yÞ, if x; y 2 ½q;1�;

(c) Mðx; yÞ ¼ f�1 f ðmedianðk;x;qÞÞþf ðmedianðk;y;qÞÞ
2

� �
otherwise,

with M0;k;k : ½0; k�2 ! ½0; k� a continuous, commutative, increasing, idempotent and bisymmetric function such that
Mð0; kÞ ¼ k; Mq;1;q : ½q;1�2 ! ½q;1� a continuous, commutative, increasing, idempotent and bisymmetric function such that
Mðq;1Þ ¼ q and f any continuous, bounded, strictly increasing function on ½k;q�.
2.2. Ordered weighted averaging aggregation operators

As already stated in the introduction, Yager introduced a particular type of aggregation function [22], the so-called or-
dered weighted averaging aggregation (OWA) operator.

Definition 3. A function F : ½0;1�n ! ½0;1� is called an OWA operator of dimension n if there exists a weighting vector W,
W ¼ ðw1;w2; . . . ;wnÞ 2 ½0;1�n with

P
iwi ¼ 1, and such that
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Fða1; a2; . . . ; anÞ ¼
Xn

j¼1

wjbj; with bj the jth largest of the ai;
for any ða1; . . . ; anÞ 2 ½0;1�n.

Any OWA operator is completely defined by its weighting vector. However, in his original definition, Yager considered
functions F defined on the whole Euclidean space Rn and taking values in R, but for our interest it is more appropriate to
reduce this to ½0;1�n. Observe that with restriction

P
iwi ¼ 1, if any of the components of the weighting vector W is equal

to 1, the other components should be zero.
Evidently, each OWA operator is a commutative, continuous, idempotent aggregation function [10,12,15,23]. Besides, any

OWA operator F is an averaging function, i.e., it verifies min 6 F 6max (recall that this is a property fulfilled by any idem-
potent aggregation function). For an OWA operator the so-called stability under positive linear transformations with the
same unit and independent zeros (SPLU) is also fulfilled [15]. That is, if F is an OWA operator of dimension n, and if r > 0
and t 2 ½0;1�, then, for any ða1; . . . ; anÞ 2 ½0;1�n, such that ðra1 þ t; ra2 þ t; . . . ; ran þ tÞ 2 ½0;1�n, the following holds:
Fðra1 þ t; ra2 þ t; . . . ; ran þ tÞ ¼ rFða1; a2; . . . ; anÞ þ t:
Yager defined and investigated the following particular types of OWA operators, which coincide with well-known specific
cases of aggregation functions [23].

1. The ‘‘or” operator F�: The weighting vector, denoted by W�, is defined as w1 ¼ 1 and wj ¼ 0 for all j – 1. Observe that
F�ðx1; . . . ; xnÞ ¼ maxðx1; . . . ; xnÞ.

2. The ‘‘and” operator F�: The weighting vector, denoted by W�, is defined as wn ¼ 1 and wj ¼ 0 for all j – n. Observe that
F�ðx1; . . . ; xnÞ ¼ minðx1; . . . ; xnÞ.

3. The averaging operator FA: The weighting vector, denoted by WA, is defined as wj ¼ 1=n for all j 2 f1; . . . ;ng. Observe that
in fact FA recovers the arithmetic mean of x1; . . . ; xn.

Moreover, since OWA operators are averaging functions, the OWA operators F� and F� can be considered the ‘‘smallest”
and ‘‘largest” OWA operators in the following sense.
F�ða1; . . . ; anÞ 6 Fða1; . . . ; anÞ 6 F�ða1; . . . ; anÞ for all ða1; . . . ; anÞ 2 ½0;1�n:
Given an OWA operator of dimension n, another OWA operator of the same dimension can be built by duality in the follow-
ing way [22].

Definition 4. Let F be an OWA operator of dimension n with weighting vector W ¼ ðw1; . . . ;wj; . . . wnÞ. The dual operator of F,
denoted by bF , is the OWA operator given by the dual weighting vector cW ¼ ðwn; . . . ;wn�jþ1; . . . ;w1Þ.

To measure how far a given OWA operator is from F� and F�, the following measure was introduced by Yager [23].

Definition 5. Let F be an OWA operator of dimension n and W its weighting vector. The orness measure of W is defined as
ornessðWÞ ¼ 1
n� 1

Xn

i¼1

ðn� iÞwi:
From this definition it is easily shown that ornessðW�Þ ¼ 1; ornessðW�Þ ¼ 0 and ornessðWAÞ ¼ 0:5. Yager also proved that
the greater the orness of an OWA operator, the closer that operator is to the pure ‘‘or” operator F� [23].

Yager introduced another measure to compare OWA operators that have the same orness.

Definition 6. Let F be an OWA operator of dimension n and W its weighting vector. Its dispersion measure is defined as
dispersionðWÞ ¼ �
Xn

i¼1

wi ln wi:
Observe that dispersion can be understood as a measure of entropy, as it shows how ‘‘far” a given OWA operator is from
the averaging operator FA [22]. In particular:

(1) If wi ¼ 1 for some i, then dispersionðWÞ ¼ 0, so the dispersion is minimal.
(2) If wi ¼ 1=n for all i, then dispersionðWÞ ¼ ln n, so the dispersion is maximal.

One of the main advantages of OWA operators is the flexibility in the choice of the types of aggregation rules that can be
modeled. However, a problem arises as to how to determine the weights to be used in a particular application.

3. OWA operators and Ka operators

As stated in the introduction, Atanassov proposed a family of operators to associate a fuzzy set to each IVFS [2,3].
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Definition 7. The operator K : ½0;1� � Lð½0;1�Þ ! ½0;1� is given by K ¼ ðKaÞa2½0;1�, with each operator Ka : Lð½0;1�Þ ! ½0;1�
defined as a convex combination of its boundary arguments by
KaðxÞ ¼ a � �xþ ð1� aÞ � x;
where for any x 2 Lð½0;1�Þ we write x ¼ ½x; �x�.

Clearly the following properties hold.

(i) K0ðxÞ ¼ x for all x 2 Lð½0;1�Þ.
(ii) K1ðxÞ ¼ �x for all x 2 Lð½0;1�Þ.

(iii) KaðxÞ ¼ Kað½K0ðxÞ;K1ðxÞ�Þ ¼ K0ðxÞ þ aðK1ðxÞ � K0ðxÞÞ ¼ xþ að�x� xÞ for all x 2 Lð½0;1�Þ.

Obviously KaðxÞ ¼ a � �xþ ð1� aÞ � x, and because �x P x, the family ðKaÞa2½0;1� is increasing.
Note that if we take the two-dimensional OWA operator F with weighting vector W ¼ ða;1� aÞ and apply it to the

bounds of the intervals, we obtain
Fðx; �xÞ ¼ Fð�x; xÞ ¼ KaðxÞ
for all x 2 Lð½0;1�Þ. Nevertheless, although in these conditions the numerical value of both operators coincide, the two con-
cepts are very different. Ka acts on elements of Lð½0;1�Þ, whereas the OWA operator F acts over ½0;1� � ½0;1�. In other words,
the domains of both operators are different. In particular, Ka is defined on the set of pairs of points, extremes of the intervals,
that are ordered. However, an OWA operator is defined on the unit square and requires an ordering operation.

This numerical coincidence prompted us to study possible relations between the two concepts, as in the following results.

Theorem 4 (Ka operators are OWA operators of dimension 2). Let a 2 ½0;1� and Ka ¼ Ka � i, where Ka is the operator given in
Definition 7 and i : ½0;1�2 ! Lð½0;1�Þ given by
iðx; yÞ ¼ ½minðx; yÞ;maxðx; yÞ�:
Then, if Fðx; yÞ is the OWA operator (of dimension 2) defined by the weighting vector W ¼ ða;1� aÞ, we have
Kaðx; yÞ ¼ Fðx; yÞ for all x; y 2 ½0;1�:
Proof. It is sufficient to take into account that any interval x 2 Lð½0;1�Þ is defined by a pair ðx; �xÞ 2 ½0;1�2 with x 6 �x, the shape
of the operator Ka and the definition of OWA operators. h

In particular, since the operator Ka is an OWA operator, we have the following corollary.

Corollary 1. Let a 2 ½0;1�. Then the following hold:

(a) Ka is commutative and idempotent.
(b) K0ðx; yÞ ¼minðx; yÞ and K1ðx; yÞ ¼maxðx; yÞ.
(c) Ka is increasing.
(d) Let b 2 ½0;1�. If a 6 b, then Kaðx; yÞ 6 Kbðx; yÞ for all ðx; yÞ 2 ½0;1�2.
(e) Kað0;1Þ ¼ a.

Proof. The proof directly follows from Theorem 4 and the well-known properties of OWA operators. h

Theorem 5 (OWA operators of dimension 2 are Ka operators). Let F be an OWA operator of dimension 2 with weighting vector
W ¼ ðw1;w2Þ. Then for any ðx; yÞ 2 ½0;1�2 we have
Fðx; yÞ ¼ Kaðx; yÞ;
with a ¼ w1.

Proof. The proof directly follows from the definition of Ka. h

Because Ka operators are written in terms of K0 and K1, we can also express the OWA operators in terms of these two
OWA operators. In particular, observe that if F is an OWA operator of dimension 2 defined by the weighting vector
ðw1;w2Þ, then, for any x; y 2 ½0;1�
Fðx; yÞ ¼ w1K1ðx; yÞ þw2K0ðx; yÞ:
In particular,

(1) F�ðx; yÞ ¼ K1ð½minðx; yÞ;maxðx; yÞ�Þ ¼ K1ðx; yÞ;
(2) F�ðx; yÞ ¼ K0ð½minðx; yÞ;maxðx; yÞ�Þ ¼ K0ðx; yÞ; and
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(3) FAðx; yÞ ¼ K0ð½minðx; yÞ;maxðx; yÞ�Þ þ K1ð½minðx; yÞ;maxðx; yÞ�Þð Þ=2 ¼ 1
2 ðxþ yÞ ¼ K0ðx; yÞ þK1ðx; yÞð Þ=2

For the orness and dispersion we have the following results.

Proposition 1. Let a 2 ½0;1�. The following properties hold:

(1) ornessðKaÞ ¼ a.
(2) dispersionðKaÞ ¼ a ln 1�a

a

� �
� lnð1� aÞ.
Proof. The proof follows directly from the definitions of orness and dispersion. h

It is easy to see that dispersion is maximal when a ¼ 1=2 – which means that both weights are equal – and is minimal
when a ¼ 1 or a ¼ 0, and, as in the general OWA case, could be used to measure the entropy of the transformation of an IVFS
in a fuzzy set.

Proposition 2. Let a 2 ½0;1� and Ka ¼ Ka � i, where Ka is the operator given in Definition 7 and i is the function given in Theorem
4. The following properties hold.

(1) If a 2�0;1½, then Ka is strictly increasing;
(2) If a 2�0;1½, then Kaðx; yÞ ¼ 0 if and only if x ¼ y ¼ 0.
(3) If a 2�0;1½, then Kaðx; yÞ ¼ 1 if and only if x ¼ y ¼ 1.
(4) Ka has the SPLU property.
(5) Kaðx; yÞ þ bKaðx; yÞ ¼ xþ y, where bKa denotes the dual mapping of Ka, as given in Definition 4.
(6) Ka ¼ bK1�a.
Proof. All these properties follow from the corresponding ones for two-dimensional OWA operators. h

Although some of these properties are already known for the Ka operators, they are now a consequence of the OWA per-
spective. The SPLU (stability under positive linear transformations with the same unit and independent zeros) property can
be interpreted as a partial translation invariance and is useful in applications that require handling of general amplitudes.

Remark 1. Let a 2�0;1½ and Ka ¼ Ka � i, where Ka is the operator given in Definition 7. Then:
(1) Ka is not associative. Consider
KaðKað0;1Þ;1Þ ¼ Kaða;1Þ ¼ 2a� a2;
whereas
Kað0;Kað1;1ÞÞ ¼ Kað0;1Þ ¼ a;
and 2a� a2 – a if 0 – a – 1.
(2) Ka is not bisymmetric whenever a – 1

2. KaðKað0;1Þ;Kaða;aÞÞ ¼ Kaða;aÞ ¼ a. By contrast, KaðKað0;aÞ;Kað1;aÞÞ ¼
Kaða2;2a� a2Þ ¼ 3a2 � 2a3. In this situation for a R f0;0:5;1g, bisymmetry does not hold.
4. Generalized Ka operators

Observe that, if we denote by K the system of operators ðKaÞa2½0;1�, then K can be regarded as an operator on ½0;1� � Lð½0;1�Þ
with values in [0,1]. To generalize this operator, the following definition was proposed by Bustince et al. [6,8,7].

Definition 8. A GK operator is a mapping GK : ½0;1� � Lð½0;1�Þ ! ½0;1� such that, if we denote GKaðxÞ ¼ GKða;xÞ, the
following properties hold:

(i) If x ¼ �x, then GKaðxÞ ¼ x.
(ii) GK0ðxÞ ¼ x;GK1ðxÞ ¼ �x for all x 2 Lð½0;1�Þ.

(iii) If x6Ly, with x; y 2 Lð½0;1�Þ, then GKaðxÞ 6 GKaðyÞ.
(iv) Let b 2 ½0;1�. If a 6 b, then GKaðxÞ 6 GKbðxÞ for all x 2 Lð½0;1�Þ.
(v) GKað½0;1�Þ ¼ a.
From the theoretical point of view, condition (v) above might be very strong. From the applied point of view, it is quite
important to ensure that GKð�; ½0;1�Þ provides a bijection from the unit interval onto itself. Condition (v) above is a very sim-
ple way of building this bijection, in such a way that, moreover, [0,1] comes out to be a neutral element.

Example 1
GKað½x; �x�Þ ¼
�x if �x 6 a;
x if x P a;
a otherwise:

8><>: ð1Þ
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Note that the result obtained is nothing but the a-median of x and �x, or, equivalently, the result given by the idempotent
nullnorm with annihilator a when applied to x and �x (see, e.g. [10]).

Proposition 3. Any system K ¼ ðKaÞa2½0;1� is a GK operator.

By contrast, the Ka operators can be considered the ‘‘simplest” GKa operators, in the sense of the following proposition.

Proposition 4. Let H ¼ ðHaÞa2½0;1� be a GK operator such that, for any a 2 ½0;1�;Ha is a linear mapping of the extremes of the
interval, i.e.
HaðxÞ ¼ aðaÞxþ bðaÞ�x;
for some mappings a; b : ½0;1� ! ½0;1�. Then aðaÞ ¼ 1� a and bðaÞ ¼ a for any a 2 ½0;1�, that is, Ha ¼ Ka.

Proof. Suppose that HaðxÞ ¼ aðaÞxþ bðaÞ�x as in the statement of the proposition. From (i) in the definition of GKa operators
we have that Hað½x; x�Þ ¼ aðaÞxþ bðaÞx ¼ x for all x 2 ½0;1�, so aðaÞ ¼ 1� bðaÞ. Since from (v) in the same definition
Hað½0;1�Þ ¼ ð1� bðaÞÞ � 0þ bðaÞ � 1 ¼ a, it follows that bðaÞ ¼ a and the result holds. h
4.1. Construction of operators GKa

Theorem 6. Let a 2 ½0;1� and let f : ½0;1� ! ½0;1� be a continuous and strictly increasing function. Then the operator
GKa : Lð½0;1�Þ ! ½0;1� given by
GKaðxÞ ¼ f�1 ð1� pÞf ðxÞ þ pf ð�xÞð Þ;
with p ¼ f ðaÞ�f ð0Þ
f ð1Þ�f ð0Þ, is a continuous GKa operator in the sense of Definition 8.

Proof. We see that all the properties in Definition 8 hold. Continuity is clear. If a ¼ 0, then p ¼ 0. In this case
GK0ð½x; �x�Þ ¼ f�1ðf ðxÞÞ ¼ x. If a ¼ 1, then p ¼ 1 and therefore GK1ð½x; �x�Þ ¼ �x.

If ½x; y�<L½z; y�, because f is continuous and strictly increasing, we have, for p as in the statement of the theorem and fixed,
GKað½x; y�Þ ¼ f�1ðð1� pÞf ðxÞ þ pf ðyÞÞ < f�1ðð1� pÞf ðzÞ þ pf ðyÞÞ ¼ GKað½z; y�Þ.

Take a; b 2 ½0;1�. If a 6 b, then f ðaÞ 6 f ðbÞ. Since p is increasing in a and f is a strictly increasing function, it follows that
GKað½x; �x�Þ 6 GKbð½x; �x�Þ.

GKað½0;1�Þ ¼ f�1ðð1� pÞf ð0Þ þ pf ð1ÞÞ ¼ f�1ðf ð0Þ þ pðf ð1Þ � f ð0ÞÞÞ ¼ f�1 f ð0Þ þ f ðaÞ�f ð0Þ
f ð1Þ�f ð0Þ ðf ð1Þ � f ð0ÞÞ

� �
¼ f�1ðf ðaÞÞ ¼ a. h

Remark 2. Continuity of the function f is necessary in Theorem 6, as the following example shows. Define
f ðxÞ ¼
x if 0 6 x 6 1

2 ;
1
2 xþ 1

2 if 1
2 < x 6 1:

(

Then it is clear that f is not surjective, because, for instance, there is no inverse image for the point x ¼ 5

8, so the function f�1 is
not defined over the whole [0,1]. Since a strictly increasing, surjective function under the conditions of Theorem 6 should be
continuous – it cannot have any point of discontinuity, because it cannot have jumps – the hypothesis of continuity is
natural.

Corollary 2. Let u be an automorphism of the unit interval and a GK operator GK ¼ ðGKaÞa2½0;1�. Then the system
GKðuÞ ¼ GKðuÞa

� �
a2½0;1�

where, for any a 2 ½0;1�;GKðuÞa : Lð½0;1�Þ ! ½0;1� is defined by
GKðuÞa ðxÞ ¼ u�1 uðaÞuð�xÞ þ ð1�uðaÞÞuðxÞð Þ;
is a continuous GK operator in the sense of Definition 8.

Proof. The proof is immediate. h

Example 2. Just by taking uðxÞ ¼ x we recover Atanassov’s operator.

Example 3. For each q > 0 the function uðxÞ ¼ xq defines the GK operator given by
GKðuÞa ðxÞ ¼ aqð�xÞq þ ð1� aqÞðxÞq
� �1

q;
for a 2 ½0;1�, that is, a weighted root-power mean (see, e.g. [10]) of x and �x.

Corollary 3. Let N be the strong negation generated by Theorem 1 using the automorphism in Corollary 2 . Then we have:
GKðuÞa ðxÞ ¼ u�1 uðaÞuð�xÞ þuðNðaÞÞuðxÞð Þ:

Proof. The proof is direct. h
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4.2. GKa operators

Operators GKa act on elements of Lð½0;1�Þ. Now we generalize them in such a way that they are defined over ½0;1�2, at the
same time that they retain most of the properties of GKa. This leads to the following theorem.

Theorem 7. Consider i : ½0;1�2 ! Lð½0;1�Þ given by
iðx; yÞ ¼ ½minðx; yÞ;maxðx; yÞ�:
Let a 2 ½0;1� and consider GKa : ½0;1�2 ! ½0;1� given by
GKaðx; yÞ ¼ ðGKa � iÞðx; yÞ;
where GKa is the operator given in Definition 8 . Then the following observations hold.

(a) GKa is commutative and idempotent.
(b) GK0ðx; yÞ ¼minðx; yÞ and GK1ðx; yÞ ¼ maxðx; yÞ.
(c) GKa is increasing.
(d) Let b 2 ½0;1�. If a 6 b, then GKaðx; yÞ 6 GKbðx; yÞ for all ðx; yÞ 2 ½0;1�2.
(e) GKað0;1Þ ¼ a.

Proof. The proof is direct. h

Proposition 5. Let a 2 ½0;1� and GKa ¼ GKa � i, where GKa is the operator given in Definition 8 and i is the function given in
Theorem 7 . The following properties hold.

(1) If a ¼ GKaða;1Þ with a 2�0;1�, then GKa is not strictly increasing.
(2) If a ¼ GKaða;0Þ with a 2 ½0;1½, then GKa is not strictly increasing.
(3) If GKa is strictly increasing, then GKa is strictly increasing.
(4) GKaðminðx; yÞ;maxðx; yÞÞ ¼ GKaðx; yÞ for all ðx; yÞ 2 ½0;1�2.

Proof. (1) Suppose that GKa is strictly increasing. By taking a 2�0;1� we have a ¼ GKaða;1Þ > GKað0;1Þ ¼ a, which is con-
tradictory. (2) As for item (1). (3)–(4) The proof is direct. h

Example 4. If in the construction of GKa ¼ GKa � i we take expression (1) for GKa, the operator we obtain is an a-median (an
idempotent nullnorm with annihilator a). Among other properties, it satisfies a ¼ GKaða;0Þ and a ¼ GKaða;1Þ (in fact it sat-
isfies a ¼ GKaða; xÞ for any x 2 ½0;1�) and it is not strictly increasing.
4.3. Bisymmetric GKa operators

In Remark 1 we have seen that the operator Ka ¼ Ka � i constructed from the Ka operator is not bisymmetric. Hence, if we
take GKa ¼ Ka, the operator
GKaðx; yÞ ¼ ðGKa � iÞðx; yÞ ¼ GKað½minðx; yÞ;maxðx; yÞ�Þ ¼ Kað½minðx; yÞ;maxðx; yÞ�Þ
¼minðx; yÞ þ aðmaxðx; yÞ �minðx; yÞÞ;
is not bisymmetric. Nevertheless, if we take expression (1) for GKa, then GKa ¼ GKa � i is bisymmetric. All these consider-
ations prompted us to study the bisymmetry of GKa.

Theorem 8. Let GKa ¼ GKa � i be a bisymmetric operator and GKa the operator given in Definition 8 . Then:
GKaða;1Þ ¼ a if and only if GKaða;0Þ ¼ a:
Proof. By Theorem 7 we know that GKa is idempotent and GKað0;1Þ ¼ a.

(Necessity) By hypothesis, GKaða;1Þ ¼ a. Therefore
GKaða;0Þ ¼ GKa GKaða;1Þ;GKað0;0Þð Þ ¼ GKa GKaða; 0Þ;GKað1;0Þð Þ ¼ GKaðGKaða;0Þ;aÞ:
On the other hand, we have that
GKaðGKaða;0Þ;aÞ ¼ GKaðGKaða;0Þ;GKaða;1ÞÞ ¼ GKaðGKaða;aÞ;GKað0;1ÞÞ ¼ GKaða;aÞ ¼ a:

(Sufficiency) The proof is similar. h
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4.3.1. Increasing and bisymmetric GKa operators
In the next theorem we analyze when the increasing bisymmetric operators considered by Fodor and Marichal [14] satisfy

Mað0;1Þ ¼ a (which is an adaptation of GKað0;1Þ ¼ a).

Theorem 9. Ma : ½0;1�2 ! ½0;1� with a 2 ½0;1� and Mað0;1Þ ¼ a is a continuous, commutative, increasing, idempotent,
bisymmetric function if and only if there exist two real numbers k and q fulfilling 0 6 k 6 q 6 1 and a bounded function f that
is continuous and strictly increasing on ½k;q� fulfilling 2f ðaÞ ¼ f ðkÞ þ f ðqÞ such that
Maðx; yÞ ¼

M0;k;kðx; yÞ if x; y 2 ½0; k�
Mq;1;qðx; yÞ; if x; y 2 ½q;1�

f�1 f ðmedianðk;x;qÞÞþf ðmedianðk;y;qÞÞ
2

� �
otherwise

8>><>>:
9>>=>>;
with M0;k;k : ½0; k�2 ! ½0; k� a continuous, commutative, increasing, idempotent and bisymmetric function such that
Mað0; kÞ ¼ k; Mq;1;q : ½q;1�2 ! ½q;1� a continuous, commutative, increasing, idempotent and bisymmetric function such that
Maðq;1Þ ¼ q.

Proof. (Necessity) By Theorem 3 we have that there exist two real numbers k and q fulfilling 0 6 k 6 q 6 1 such that:

(a) Maðx; yÞ ¼ M0;k;kðx; yÞ, if x; y 2 ½0; k�.
(b) Maðx; yÞ ¼ Mq;1;qðx; yÞ, if x; y 2 ½q;1�.

(c) Maðx; yÞ ¼ f�1 f ðmedianðk;x;qÞÞþf ðmedianðk;y;qÞÞ
2

� �
otherwise,

with M0;k;k : ½0; k�2 ! ½0; k� a continuous, commutative, increasing, idempotent and bisymmetric function such that
Mað0; kÞ ¼ k; Mq;1;q : ½q;1�2 ! ½q;1� a continuous, commutative, increasing, idempotent and bisymmetric function such that
Maðq;1Þ ¼ q and f any continuous, bounded, strictly increasing function on ½k;q�.

Moreover, by hypothesis, Mað0;1Þ ¼ a. Therefore,
Mað0;1Þ ¼ a ¼ f�1 f ðkÞ þ f ðqÞ
2

� �
;

and then, since by our hypothesis, f can be inverted, 2f ðaÞ ¼ f ðkÞ þ f ðqÞ.
(Sufficiency) By hypothesis, 0 6 k 6 q 6 1 and 2f ðaÞ ¼ f ðkÞ þ f ðqÞ. Besides, medianðk;0;qÞ ¼ k and medianðk;1;qÞ ¼ q,

and therefore Mað0;1Þ ¼ f�1 f ðkÞþf ðqÞ
2

� �
¼ f�1ðf ðaÞÞ ¼ a. h

Under the conditions of Theorem 9 we have that the values of k and q are related to the value of a we are considering. For
this reason we denote them by kðaÞ and qðaÞ, respectively.

Corollary 4. Under the conditions of Theorem 9 , if the family Ma is increasing in a, that is, if for any a; b 2�0;1½, if a P b, then
Maðx; yÞP Mbðx; yÞ for all x; y 2 ½0;1�, and then kðaÞ and qðaÞ are increasing, i.e. if 1 > a P b > 0, then kðaÞP kðbÞ and
qðaÞP qðbÞ.

Proof. Take a; b 2�0;1½. By definition (see [14]),
kðaÞ ¼ supfx 2 ½0;1�jMað0; xÞ ¼ xg:
Take x 2�0;1½. If x > kðaÞ, by continuity, Mað0; xÞ < x. Since, if Mað0; xÞ > x, as Mað0;1Þ ¼ a < 1, by the mean value theorem
there exists x0 2�0;1½ such that Mað0; x0Þ ¼ x0, which is a contradiction.

Take 0 < b < a. If kðaÞ ¼ 1; kðbÞ 6 kðaÞ trivially. If kðaÞ < 1, then for all x 2�kðaÞ;1�;Mað0; xÞ < x and
Mbð0; xÞ 6 Mað0; xÞ < x, and therefore kðbÞ 6 kðaÞ. Analogously, it is evident that qðbÞ 6 qðaÞ. h

In Theorem 9 we studied the operators defined by Fodor and Marichal satisfying Mað0;1Þ ¼ a. We also know that oper-
ators GKa have the following properties: GK0ðx; yÞ ¼minðx; yÞ and GK1ðx; yÞ ¼ maxðx; yÞ. For this reason, in the next theorem
we use the functions of Fodor and Marichal to define operators Ga such that Gað0;1Þ ¼ a;G0ðx; yÞ ¼minðx; yÞ and
G1ðx; yÞ ¼maxðx; yÞ.

Theorem 10. Consider the function Ga : ½0;1�2 ! ½0;1� with a 2 ½0;1� defined as:
Gaðx; yÞ ¼

maxðx; yÞ if x; y 2 ½0; kðaÞ�;
minðx; yÞ if x; y 2 ½qðaÞ;1�;
f�1 f ðmedianðkðaÞ;x;qðaÞÞÞþf ðmedianðkðaÞ;y;qðaÞÞÞ

2

� �
otherwise;

8>><>>:

with kðaÞ and qðaÞ two real numbers such that 0 6 kðaÞ 6 qðaÞ 6 1, and f a function that is continuous and strictly increasing on
½kðaÞ;qðaÞ� fulfilling 2f ðaÞ ¼ f ðkðaÞÞ þ f ðqðaÞÞ. Then Ga is continuous, commutative, increasing, idempotent and bisymmetric and
satisfies Gað0;1Þ ¼ a;G0ðx; yÞ ¼minðx; yÞ and G1ðx; yÞ ¼maxðx; yÞ.
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Proof. Just observe that Ga has the structure of the mapping Ma in the sufficiency condition in Theorem 9. h

Corollary 5. In the setting of Theorem 10 we have that:
Gaða;1Þ ¼ a if and only if a ¼ kðaÞ ¼ qðaÞ:
Proof. (Necessity) By Proposition 8 we know that Gaða;1Þ ¼ a if and only if Gaða;0Þ ¼ a. Taking into account Theorem 10,

we have that 0 6 kðaÞ 6 a 6 qðaÞ 6 1. Therefore, if Gaða;1Þ ¼ a ¼ f�1 f ðaÞþf ðqðaÞÞ
2

� �
, then a ¼ qðaÞ.

If Gaða;0Þ ¼ a ¼ f�1 f ðaÞþf ðkðaÞÞ
2

� �
, then a ¼ kðaÞ.

(Sufficiency) The proof is direct. h

Note that if a ¼ kðaÞ ¼ qðaÞ, then the function Ga of Theorem 10 becomes an a-median (i.e., the idempotent nullnorm
with annihilator a).

From Theorem 10 and Corollary 5, if we impose the condition that a is an annihilator on the operators of Fodor and Mari-
chal, we have the following result.

Theorem 11. The idempotent nullnorms with annihilator a 2�0;1½ are GKa ¼ GKa � i operators.
Proof. In the construction GKa, take GKa given in (1). We have
GKaðx; yÞ ¼ GKað½minðx; yÞ;maxðx; yÞ�Þ ¼
maxðx; yÞ if x; y < a;
minðx; yÞ if x; y P a;
a otherwise:

8><>: ð2Þ
So the theorem is proved by recalling Theorem 10, Corollary 5 and the fact that for each a 2�0;1½ there exists a unique idem-
potent nullnorm Va with annihilator a [18] which is given by (2). h

Remark 3. Note that under the hypothesis of Theorem 11:

� GKa is bisymmetric because it is commutative and associative.
� GKað0;1Þ ¼ a ¼ GKaða;1Þ ¼ GKaða; 0Þ ¼ GKaða;aÞ, and therefore by Proposition 5 we have that GKa is not strictly

increasing.
� GKa ¼ GKa � i with GKa the operator given in (1); then we have that GK0ðx; yÞ ¼minðx; yÞ and GK1ðx; yÞ ¼maxðx; yÞ.
4.3.2. Construction from Aczél’s theorem
In this subsection we consider a family of strictly increasing operators Ha that satisfy properties (a)–(e) of Theorem 7 and

that are obtained from Aczél’s theorem.

Theorem 12. Consider the function j : ½0;1�2 ! ½0;1�2 given by
jðx; yÞ ¼ ðminðx; yÞ;maxðx; yÞÞ;
and consider Ha : ½0;1�2 ! ½0;1� given by
Haðx; yÞ ¼ f�1ðpf ðxÞ þ ð1� pÞf ðyÞÞ;
where f : ½0;1� ! ½0;1� is continuous and strictly increasing, p ¼ f ð1Þ�f ðaÞ
f ð1Þ�f ð0Þ and a 2 ½0;1�. In this setting, the function

Ha : ½0;1�2 ! ½0;1� given by
Haðx; yÞ ¼ ðHa � jÞðx; yÞ ¼ f�1ðpf ðminðx; yÞÞ þ ð1� pÞf ðmaxðx; yÞÞÞ ¼ f�1ðf ðmaxðx; yÞÞ � pjf ðxÞ � f ðyÞjÞ
satisfies the following:

(a) It is commutative and idempotent.
(b) H0ðx; yÞ ¼ minðx; yÞ and H1ðx; yÞ ¼ maxðx; yÞ.
(c) If a 2�0;1½, it is strictly increasing.
(d) Take a; b 2 ½0;1�. If a 6 b, then Haðx; yÞ 6 Hbðx; yÞ for all ðx; yÞ 2 ½0;1�2.
(e) Hað0;1Þ ¼ a.
Proof. The proof is direct from Theorem 2. h

Note that the above operator is a generalized OWA (a ‘‘quasi-OWA”), i.e., the transformation (see e.g. [10] p. 30) of an
OWA by means of a monotonic function (see e.g. [10] p. 56, where it is called OWQA). Note that these functions can also
be seen as ‘‘symmetrization” (see e.g. [10] p. 15) of the weighted quasi-arithmetic mean, because they can be constructed
from the latter (see [10 p. 56]).
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Remark 4. Note that in the construction of Ha, we use Aczél’s theorem (Theorem 2). Nevertheless, the operators given by
Aczél are bisymmetric, whereas the function Ha, in general, is not.

Corollary 6. Under the conditions of Theorem 12 the following properties hold:

(1) If p ¼ 1
2, then Ha is bisymmetric.

(2) Haðx; Tðy; zÞÞ ¼ TðHaðx; yÞ;Haðx; zÞÞ if and only if T ¼min.
(3) Haðx; Sðy; zÞÞ ¼ SðHaðx; yÞ;Haðx; zÞÞ if and only if S ¼max.
Proof. 1. The proof is direct. Observe that with weight p ¼ 1
2 the operator becomes a quasi-arithmetic mean and hence fulfills

bisymmetry. 2.
(Sufficiency) We know that Tðx; xÞ 6 x holds for any t-norm. Then Haðx; Tðx; xÞÞ ¼ TðHaðx; xÞ;Haðx; xÞÞ ¼ Tðx; xÞ; that is,

f�1ðpf ðTðx; xÞ þ ð1� pÞf ðxÞÞ ¼ Tðx; xÞ. Therefore, pf ðTðx; xÞ þ ð1� pÞf ðxÞ ¼ f ðTðx; xÞÞ and then ð1� pÞf ðxÞ ¼ ð1� pÞf ðTðx; xÞÞ.
Taking into account that p 2�0;1½ and f is strictly increasing and continuous, Tðx; xÞ ¼ x for all x 2 ½0;1�. Because the only
idempotent t-norm is the minimum, we have that T ¼min.

(Necessity) The proof is direct from the monotonicity of Ha. 3. Similar to item 1. h

Corollary 7. Under the conditions of Theorem 12 , if the function f is such that for any x 2 ½0;1� and for any k P 0 such that
kx 2 ½0;1� the identity f ðkxÞ ¼ kf ðxÞ holds (first-order homogeneity), then
Haðkx; kyÞ ¼ kHaðx; yÞ:
Proof. Under the conditions of Theorem 12, if f ðkxÞ ¼ kf ðxÞ, then f�1ðkxÞ ¼ kf�1ðxÞ, as can easily be seen by applying f to each
side of this last identity and taking into account the injectivity of f. h

Remark 5. Observe that if f is first-order homogeneous, then f ðxÞ ¼ f ð1Þx for all x 2 ½0;1�.

Corollary 8. Under the conditions of Theorem 12 , if f is first-order homogeneous, then
Haðx; yÞ ¼ ðHa � jÞðx; yÞ ¼
f�1ðf ð1ÞKaðx; yÞÞ if a 2�0;1½;
minðx; yÞ if a ¼ 0;
maxðx; yÞ if a ¼ 1:

8><>:

Proof. Immediate. h

Remark 6. Under the conditions of Theorem 12, if f ðxÞ ¼ x for all x 2 ½0;1� and a 2�0;1½, then
Haðx; yÞ ¼ ðHa � jÞðx; yÞ ¼ Kaðx; yÞ ¼ ðKa � iÞðx; yÞ
for all ðx; yÞ 2 ½0;1�2.
5. Construction of a FS from a IVFS and an operator GKa

In this section we present two methods to associate with each IVFS over the referential U a fuzzy set over the same ref-
erential. In both methods we use the operators GKa.

5.1. Construction with fixed a

Let A 2 IVFSðUÞ. Fix a 2 ½0;1�. By means of the corresponding GKa operator, we can associate a fuzzy set Aa with A in the
following way [2,3,5]:
Aa ¼ ðu;lAa
ðuÞÞju 2 U

� 	
with lAa

ðuÞ ¼ GKaðMAðuÞÞ; ð3Þ
where MA denotes the membership function of A.
Let A be an IVFS. We denote by fAaga2½0;1� the family of all fuzzy sets associated with A by an operator GKa when a varies in

[0,1].
From the definition of the GKa operators, the following theorem follows [4].

Theorem 13. Let A 2 IVFSðUÞ, let b 2 ½0;1� and consider an operator GKa. Then fAaga2½0;1� is a totally ordered family of fuzzy sets
with respect to the order
Aa 6 Ab if and only if a 6 b:
5.2. Construction with variable a

The map between IVFSðUÞ and FSðUÞ given in (3) is such that, once a is fixed, this a is used to obtain the membership of
every one of the elements u in U. This restriction is not necessary, and is not even advisable for some of the possible
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applications. In this sense, we show in the following definition a possible way of relating to each IVFS a fuzzy set in such a
way that for each u 2 U we use a different value of a to obtain its membership.

Definition 9. Let A 2 IVFSðUÞ. For each u 2 U, take aðuÞ 2 ½0;1�. Then Aað�Þ ¼ u;lAað�Þ
ðuÞ ¼ GKaðuÞðMAðuÞÞ

� �
ju 2 U

n o
is a fuzzy

set.

From Definition 9 the following properties follow.

Proposition 6. Let A 2 IVFSðUÞ.

(1) If aðuÞ 6 bðuÞ for all u 2 U, then Aað�Þ 6 Abð�Þ.
(2) If for all u 2 U we have that LengthðMAðuÞÞ ¼ 0, and then Aað�Þ ¼ A 2 FSðUÞ.
(3) Let A;B 2 IVFSðUÞ. If MAðuÞ6LMBðuÞ for all u 2 U, then Aað�Þ 6 Bað�Þ.
Proof. The proof is immediate. h

Proposition 7. Let A 2 IVFSðUÞ and take GKa ¼ Ka. Under the conditions of Definition 9 the following observations hold.

(1) If we take NðxÞ ¼ 1� x, then for any u 2 U and any choice of aðuÞ 2 ½0;1� we have 1� lðAN ÞaðuÞ ¼ lA1�aðuÞ
ðuÞ.

(2) If, for all u 2 U, we take aðuÞ ¼ lA0
ðuÞ= 1þ lA0

ðuÞ � lA1
ðuÞ

� �
with lA1

ðuÞ � lA0
ðuÞ– 1, then
Aað�Þ ¼ ðu;aðuÞÞÞju 2 Uf g:
Proof. The proof is direct. h
6. Conclusions and future research

We established a link between Ka operators and OWA operators of dimension 2. This relation led to the definition of a
class of aggregation functions, the Ka operators, in terms of Ka operators in such a way that the resulting class encompasses
OWA operators of dimension 2.

This generalization retains most of the important features of Atanassov’s operators. We presented two construction the-
orems for our functions and studied under which conditions they are bisymmetric.

Regarding future lines of research, a complete theoretical study of the general characterization of GKa operators is re-
quired. In particular, because the resulting operators are instances of aggregation functions, we intend to study which aggre-
gation functions give rise to generalized Atanassov’s operators.
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